
N90-29056

On the Simulation of Space Based
Manipulators with Contact 1

Michael W. Walker and Joseph Dionise

Robotics Research Laboratory

Electrical Engineering and Computer Science Department

The University of Michigan

Ann Arbor, Michigan 48109

Abstract

This paper presents an efficient method of simulating the motion of space based manipulators. Since the

manipulators will come into contact with different objects in their environment while carrying out different
task, an important part of the simulation is the modeling of those contacts. An inverse dynamics controller is
used to control a two armed manipulator whose task is to grasp an object floating in space. Simulation results

are presented and an evaluation is made the performance of the controller.

1 Introduction

Robotic manipulators carried by future spacecraft are expected to perform many important tasks in space.

This paper presents a methodology for the simulation and control of these robots. The main idea is the need

to include not only the dynamics of the robot in the simulation, but also the dynamics of the objects in which
the robot comes into contact. The same is true in the design of the controller. If the robot is to be used in

grappling a satellite, then the controller and the simulation must include a model of the satellite dynamics.
The model we use is called the dynamic world model as it includes the dynamics of the objects in the

robots environment and the dynamics of the robot itself. The next section presents the formulation of this
world model. Included in the model is the dynamics of contact. A recently reported distance algorithm is

used to detect contact [4].
The next section deals with the control of the robot. Feedback functions can be utilized by the controller

either at the joint level or at the Cartesian level. An example is provided for an implementation of inverse

dynamics control.
The next section presents an example simulation. In this simulation, two PUMA 560 manipulators are

mounted on a single base. The task is to grapple an object floating in space. The inverse dynamics control
algorithm which has been developed for terrestrial-based robots is used for control. Compliance is obtained

by using a relatively small position error gains in the controller.
The final section concludes the paper with a discussion of the merits and limitations of the method.

2 Dynamic World Model

This section presents the world model used by the simulation. First, the data structure which is used to
store the model is presented. Next, the kinematic modeling of the system is presented. The systems dynamic

equations of motion are then presented followed by the dynamics of contact.

1Tiffs work was supported in part by a gralLtfrom the NASA sponsored Center for Autonomous and Man-Controlled Robotic
and Sensing System% CAMRSS, at ERIM, Aim Arbor, MI
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Figure 1: An Example System

2.1 The Data Structure

In the implementation of the controller, several quantities associated with each link are needed, such as: the
link velocity, acceleration, and inertial forces and moments. This section presents the data structure used to

store this information. The form of this data structure is important since the design of the control algorithm is

directly linked to this data structure. An example system is illustrated in Figure l(a) as a basis for discussion.
In general, the number of rigid links in the system is m+ 1. For the example in Figure l(a), m+ 1 = 8. The

inertial link is a imaginary link fixed with respect to an inertial reference frame and numbered 0. All other

links are numbered in an arbitrary order from 1 to m. It is apparent that a graph data structure could be used

to store the information. Each record or item in the data structure would be associated with a particular link

and all of the information needed about that link would be stored in the associated data record. The problem

with using this type of data structure is that it does not lead to a particularly simple or efficient algorithm
for the controller. A much better data structure is a binary tree data structure. The remainder of this section

develops the method of obtaining this type of data structure.

We begin by selecting a set of joints such that if the associated links were disconnected at these joints

there would be a unique sequence of links connecting any given link to the inertial link. An example of two

joints which accomplish this are indicated in Figure l(a) by the large arrows. The resulting structure is a
tree structure and we can now establish relationships between different links in terms of their descendants and

predecessors. For example, the descendants of link 1 are links 2 and 3. The predecessors of link 7 are links 0

and 6. The immediate descendant of link 1 is link 2 and the immediate predecessor of link 2 is link 1. We also
note that some links may have more than one immediate descendant. For example, link 0 has three: 1, 6, and

4. The fact that a link could have an arbitrary number of immediate descendants causes practical problems

in the implementation of the controller. To get around this problem we introduce the concept of connector
links.

An example of a link with four joints is illustrated in Figure 2. The joint connecting the immediate

predecessor to the link is assigned the same number as the link. One of the other three joints is used to locate
the link coordinates. This determines the D-H kinematic parameters ai, oq, di, and Oi as illustrated in the

figure. To locate the remaining two joints with respect to link i coordinates we insert fictitious links, j and

k, called connector links. First is link j which is located relative to link i coordinates. The D-H kinematic

parameters [1], aj, aj, dj, and 0j are used to locate this link j coordinates with respect to link i coordinates.
Next is link k which is located relative to link j coordinates. Again the D-II kinematic parameters, a_, ak,

dk, and 0_ are used to locate this link k coordinates with respect to link j coordinates. Note that all of

the kinematic parameters, a, c_ d, and 0, associated with connector links are constant and that for both the

connector and successor links the position and orientation of the descendant with respect to the current link
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Figure 2: An Example Link, Numbered i

is described using homogeneous transforms parameterized by the D-H kinematic parameters a, or, d and 0.
The real links are called successor links to distinguish them from the imaginary connector links.

Therefore, each link can only have to two immediate descendants. One would be a connector link and
the other would be a successor link. Only one of each type is allowed. Hence, with the introduction of the

connector links we have converted a general tree data structure into a binary tree data structure.

For a given link, the first joint encountered when moving in the direction of the inertial link is numbered
the same as the given link. Thus, all of the joints except those where the kinematic loops have been broken

have been assigned a number. There are m of these. Assuming there are r independent loops the remaining

r joints located at the points where the kinematic loops have been broken are numbered from m -{- 1 to m -b r

making a total of m -}- r joints. Finally, a fictitious successor link called a terminating link is associated with
these joints and is assigned the same number as the associated joint. The purpose of the terminating link is

to allocate a item in the data structure to store all of the information concerning the associated joints, for

example, their position and the viscous friction coefficients. The D-H kinematic parameters for the terminating

links are chosen so that the loop closure equations can be written in terms of homogeneous transforms. This
will be described in more detail in the section concerning the constraint equations.

If link i is a successor link then the associated joint is either translational or rotational. In either case the

joint position is denoted by qi. If the joint is translational then qi -- di. If the joint is rotational then qi = 0i.
Finally, connector links are numbered starting at m + r + 1 on up to the total number of links, both

imaginary and real, contained in the system.
The resulting data structure for the example system is illustrated in Figure l(b). The convention we use

is that the items in the data structure associated with connector links are connected to their predecessor with

small solid circles and items associated with successor links are connected to their predecessor with small white
circles.

2.2 System Kinematics

From Figure l(b) one can see that the position of each link can be determined with respect to the inertial

coordinates by starting at the inertial link and successively computing each link position while moving out

from the inertial link. Let _i denote the number of the immediate predecessor of link i. If the homogeneous
transform of link _i coordinates with respect to the inertial link 0 coordinates, T _' is known then the• 0 '

homogeneous transform of link i coordinates with respect to the inertial link is T_ and can be computing

using the following equation.
• T_,T iTSo = o _,
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where T/÷, is a function of the ai, ell, al, Oi. Note that the same equation applies if link i is a connector link
or a successor link.

This paper uses the spatial notation by Featherstone, [3,5]. With this notation transformation matrices

are 6 x 6 matrices. The spatial transformation matrix from link i to link _i is:

[ ]X_,= i #' ', O
K(p#,)A÷, A_,

where O is the 3 x 3 null matrix, A i and_, p#, are the upper left 3 x 3 submatrix and upper right 3 x 1

submatrix of the homogeneous transformation matrix T_., respectively. The 3 x 3 matrix K 0 is a skew

symmetric matrix such that K(a)b = a x b for any 3 x 1 vectors a and b.

As with homogeneous transforms, the spatial transformation from link i coordinates to link 0 coordinates
can be computed given that of its immediate predecessor by multiplying the transforms together.

: x o'xL (1)
The spatial velocity and acceleration of link i can be determined given those of its immediate predecessor,

/ n#, + si_i if link i is a successor (2)_#, if link i is a connector
%

6#, + si_'_ + ni x si_i if link i is a successorbl = 6#, if link i is a connector (3)

where s_ is the third column of X0¢' if joint i is rotational or the sixth column of X0¢' if joint i is translational.

Thus, one starts at the root of the binary tree data structure and works out along the branches using the

above equations to successively compute the spatial transformation matrix, velocity and the acceleration of
each link.

2.3 Kinematic Constraint Equations

In general, the system is graph structured with n degrees of freedom. For this reason, we partition the set
of joints into two mutually exclusive sets. There are n joints in the first set. They are called primary joints

since their positions are independent of any other joint positions in the system. These joint positions are

combined into a single n x 1 vector called, Q. The joints in the second set are called secondary joints, as

their positions are strictly functions of the primary joint positions. Thus, the positions of all the joints in
the system are functions of the primary joint positions. We can write this fact in the form of the following

constraint equation.
q = U(Q) (4)

Note that for each Q_ there is a qj such that Q_ = qj. Given U(Q), Q, and Q, the velocity and acceleration

of all the joints can be determined.

il = E(Q)(_ (5)

_1 = E(Q)(_ + E(Q)Q (6)

where

OU(Q) (7)
E(Q)- OQ

For a given system these equations are usually fairly simple. Often the matrix E(Q) is constant. For example,

it is simply the identity matrix for a tree structured system. However, for some systems these equations can
become complex. For these systems we have found that the e-algebra is very convenient for evaluating the

time derivatives of the joint positions [9]. Using this algebra one only has to program to solution to Equation

4, change the order of the algebra and automatically obtain the solution to equations 5 and 6.
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The equations of constraint are obtained from the loop closure equations. For the system shown in Figure

l(a) there are two independent loops. The two loop closure equations are:

Tlo(ql)T]S 10 11 4 5 8= T O TloTll(q4)T4(qs)Ts(qs ) (8)

and
1 2 12 10 6 7 T 9Yo(ql)Tl(q2)T2 = To Tlo(qo)Ye(qT) 7(q9) (9)

These two matrix equations consist of a total of 32 scalar equations of which only six are independent. Thus,

we can determine ql, q2, q4, qe, qs, and q9 as a function of the joint positions q5 and qT. Using the above

notation, q5 = QI, q7 = Q2 and qa = Q3. These three equations along with the six obtained from equations 8

and 9 give us the function U(Q) defined above.

2.4 System Dynamics

The equations of motion of a system can be written in the following form:

T = H(Q)Q + C(Q, Q)Q + G.(Q)

where

1" = n x 1 vector of active forces

H(Q) = , x, pseudo moment of inertia matrix

C(Q, Q)Q = , x 1 vector of friction, centrifugal and Coriolis terms

Ge(Q) = , x 1 vector of external force components
In the simulation program the state variables are the position and velocity of the primary variables, Q. To

simulate the system one determines the acceleration of these variables from the above equation:

-- H(Q)-I(_ "- C(Q, Q)Q - Ge(Q))

We use the first method presented in [10] to compute the tt(Q) matrix. Although this method was originally

was presented for serial link manipulators, the approach is still applicable if one uses an inverse dynamics

algorithm for systems with closed kinematic loops [6,7,8].

The inverse dynamics algorithm we use is a three step process [8].

1. Given the desired positions, velocities, and accelerations of the independent variables, Q, calculate the

corresponding positions, velocities, and accelerations of the joints, q, using equations, 4 through 6.

2. For each link, determine pj, the sum of the friction force and the projection of the sum of the inertial
forces on the axis of motion of joint j.

3. Determine the active forces, r using the constraint equations and the pj computed in step 2.

r = E(Q)Tp

where _" is an n x 1 vector of the rj and p is an (m + r) x 1 vector of the pj.

Step 2 is exactly the same procedure which would be used if the system was a tree structure system. In

this case the pj would be identical to the active forces. The only difference is in the first step, wherein joint
positions, velocities, and accelerations are determined which are consistent with the constraint equations, and

the last step, wherein the constraint equations are again used in determining the active forces.

Step 2 can be implemented in three steps. First, the position, velocity and acceleration of each link is

computed using equations 1 through 3. This is done by starting at the inertial link and working out along the

branches of the tree. Next, for each link j we determine fj, the sum of the external forces and inertial forces
of link j and all of its descendants. This is done by starting at the tips of the branches of the tree and working

back toward the inertial link of the tree using the following equations. Let Fj denote the inertial force of link
j. Then:

F_ : Mj : l_i,_ + v_ × xjv_ (lO)
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where Mj = lj_j is the spatial momentum vector for the j - th link and lj is the spatial moment of inertia
matrix referred to inertial coordinates:

_Jr _J
l j = _,, OA.j-_ O

In this equation the matrix/j is the spatial moment of inertia matrix referred in link j coordinates:

where mj is the mass of link j, p.# is the location of the center of maas, and _ is the moment of inertia matrix.

Both pj and ./j are defined with respect to link j coordinates. The 3 x 3 skew symmetric matrix K(pj) is a
function of the vector _ such that for any vector a, K(n.)a = E" x a.

For connector and terminating links the Fj are zero since they have no mass. Let j be the index of the
current link. and let k and I be the index of the its successor and connector links. The vector Fj is used to

denote the sum ofthe inertialand externalforcesforlinkj and allof it'sdescendants.

= + + lk+ lr (11)

The lastpart ofstep 2 isto determine p),the forcedue to friction,r/j,plus the projectionof jtjonto the

axisof motion ofjointj.

P_ = dlj + _ (12)

where r/$ = djq# is the component of joint force due to viscous friction.

2.5 Contact Dynamics

To simulate contact we need a geometric model of the links in the system and a method of computing the
distance between these objects. We use unions of convex polytopes to model the geometry of each link. An

example of two objects is illustrated in figure 3. Polytopes were used as a model since the shape of links can

be closely approximated by using a suitable number of vertices in the polytopes and a very efficient distance

algorithm exist for computing the distance between convex polytopes, [4]. Given the position of the two
polytopes the algorithm returns the distance, d, between them as well as the location of the point in each

polytope which is nearest the other polytope, Pa and Pb" In addition, the unit line vector, W, is returned which

passesthrough the near pointsof the two objects.
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The distance between objects is calculated after each integration step in the simulation. The integration

algorithm is a variable step size algorithm. When collision has not occurred, the integration step size is limited
to ensure that each joint position changes by no more than a specified amount. As objects near each other,

the step size is also limited so the objects will just touch at the next integration step. We say that two objects

are just touching when the distance between them is equal to a small constant, e. An estimate of the time

when the objects will collide is given by the following equation.

e-d
collision time =

d

If the collision time is greater than zero, the integration step size is selected to be less than or equal to this

value. If the collision time is negative, then the objects are moving apart from each other and this collision

time is ignored.
The value of d is easily computed from the unit line vector, 17, returned from the distance algorithm and

the spatial velocities of the two objects, va and vb, which are obtained from the simulation algorithm.

d = n'(v. - m)

The dynamics of contact is modeled like a spring. When the distance between the objects is less than e a

force is applied to object A in the direction of 17 with magnitude, re, given by:

A "- Kp_d d - gdd

where Kp and Kd are positive constants. Thus, the magnitude approaches infinity as the actual distance, d,
approaches zero. The objective of this is to ensure that the objects never intersect. The derivative term is

added to provided damping. The spatial force, fe exerted on object A is given by:

f, = A_

Thus, we are modeling hard contacts with no sliding friction. The spatial force exerted on object B is the

negative of this value. These forces are included into the dynamic simulation as external forces exerted on the

links as described in the above section on dynamics.

3 Control

Feedback signals used be the controllers come in two forms: spatial feedback vectors, _'j, which are associated

with the links of the manipulator and scalar feedback functions, 0j, which are associated with the joints
of the manipulator. These can be any functions of the desired trajectory and the actual trajectory of the

manipulator. The method used to calculate the required actuator forces is as follows.

1. The feedback control law is implemented through the use of a set of spatial feedback vectors, _'j, which

are defined for each link in the system, and scalar feedback functions, f/j, which are defined for each
joint of the manipulator.

2. The 7-j are computed using the Fj and r)j as in the following recursive equations:

? ^

"r = E(Q)T/_

where k and l are the immediate descendants of link j, _b is an (m + r) x 1 vector of the _j.

These types of calculations are common to a variety of controller algorithms and are included only for the

users convenience. The choice of the Fj and ¢/j dictates the character of the controller being implemented.
The following example is for an inverse dynamics controller.
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Figure 4: Example System Used in Simulation

In the inverse dynamics controller, both the spatial feedback vectors and feedback functions are used. The

following variables are used to compute them.

0 = 0,+ K,O, + = 0
_0 = 0

where Kd and K v are positive constants.
For i > 0, the spatial acceleration vectors are computed using recursive equations:

v÷, + si_ii if link i is a successort_i = v_, if llnk i is a connector
• .o

= f iJ_, + vi x si_li + si_i if link i is a successor

i_i = ], _, if link i is a connector

The spatial feedback vectors are functions of these vectors. For i > 0:

I Ii_i + vi x Iivl if link i is a successor_Pi = 0 if link i is a connector or terminator

The scalarfeedback functionsare:

,),= {
dicii if link i is a successor
0 if link i is a connector

The hat over the _" and the Ii indicates they are only estimates of the corresponding components of the actual

system. Thus, Ii is the spatial moment of inertia matrix of link i using the estimated values of the link inertial

parameters.
This control law is a recursive implementation of the following function:

= H(Q)Q + c(Q, _))0
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4 Simulation Results

A simulation was performed of a two armed robot consisting of two PUMA 560 manipulators mounted on

a single base. The objective of the simulation is to test the ability of the manipulators to grasp a floating

object using the above inverse dynamics control algorithm. Each manipulator is equipped with an end-effector

having three rigid fingers. There are three distinct phases of this task: approach, contact, and coordination.
The approach phase is when both manipulators are approaching the object, hut nether has contacted the

object. The contact phase is the time after the first contact is made by either manipulator and before the

coordination phase. The coordination phase is after both manipulators have made three point contacts with

the object. A relatively low position feedback gain at each joint of the manipulators to provide the positional

compliance required during contact with the object.
The system is illustrated in figure 4. To model the floating object, five massless links were inserted between

the base coordinate frame and the object coordinates. These are denoted by the five large dotted line circles

in the figure.
As expected the controller performed fairly well during the approach phase. Because of the small gains

the settling time was about one second. This could be improved by increasing the gains with the result of

reducing the compliance during the contact and coordination phases. The controller did not perform as well

during the contact and coordination phase. Significant position errors and forces were observed due to the

interaction of the object with the manipulator.

5 Conclusion

This paper presented an efficient method of simulating the motion of space based robots. The simulation

includes not only the dynamics of the manipulators but also the dynamics of the objects in which the m_-

nipulators come into contact. Thus, the effect the robots have on the world in which they are a part is an
important aspect of the simulation.

An example simulation was provided of a two armed robot grappling a satellite. It was found that the

inverse dynamics controller worked reasonably well during the approach phase of this task, but it did not work

very good during the contact and coordination phases. The controller was not successful in obtaining a stable
grappling of the object. The conclusion is that a different control law is required for the three distinct phases

of this task: approach, contact, and coordination. A position control should be used during the approach
phase. A compliant motion control should be used during the contact phase and a dual-arm coordinated

motion control should be used to manipulate the satellite.

In our simulation and the real robot controller we have the capability of switching between any one of

a number a control laws from one sample period to the next. The problem we face is in deciding when a

new control law should used. This is a complex decision in which several factors must be considered. The

decisions for the switching times and the selection of the control laws should be based upon the task definition
and available sensory measurements, such as tactile and force sensors. Except in a very simple manner, we

currently have no way of either simulating this decision process or implementing it in the real robot controller.

We believe the complexity dictates the use of artificial intelligence techniques such as expert systems to make
these decisions. The lack of this decision making component is the greatest limitation of our system.

Finally, the last phase of controller development is the installation and testing with the real robot. This

process is facilitated in the our laboratory by programming both the simulation and the real robot controller in

the same language, Ada. Also, the definition of the spatial and scalar feedback functions are incorporated into

the simulation as well as the real controller with identical pieces of Ada software. Thus, once the simulation
results are acceptable, the controller code from the simulation is transfered to the robot's control computer,

where it is recompiled and linked into the robot controller software. Future goals will he to integrate an expert

system into both the simulation and the real robot motion controller to handle the control law switching
decisions.
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